Calcium reduces the sodium permeability of luminal membrane vesicles from toad bladder. Studies using a fast-reaction apparatus
نویسندگان
چکیده
Regulation of the sodium permeability of the luminal membrane is the major mechanism by which the net rate of sodium transport across tight epithelia is varied. Previous evidence has suggested that the permeability of the luminal membrane might be regulated by changes in intracellular sodium or calcium activities. To test this directly, we isolated a fraction of the plasma membrane from the toad urinary bladder, which contains a fast, amiloride-sensitive sodium flux with characteristics similar to those of the native luminal membrane. Using a flow-quench apparatus to measure the initial rate of sodium efflux from these vesicles in the millisecond time range, we have demonstrated that the isotope exchange permeability of these vesicles is very sensitive to calcium. Calcium reduces the sodium permeability, and the half-maximal inhibitory concentration is 0.5 microM, well within the range of calcium activity found in cells. Also, the permeability of the luminal membrane vesicles is little affected by the ambient sodium concentration. These results, when taken together with studies on whole tissue, suggest that cell calcium may be an important regulator of transepithelial sodium transport by its effect on luminal sodium permeability. The effect of cell sodium on permeability may be mediated by calcium rather than by sodium itself.
منابع مشابه
Regulation of the sodium permeability of the luminal border of toad bladder by intracellular sodium and calcium: role of sodium-calcium exchange in the basolateral membrane
Sodium movement across the luminal membrane of the toad bladder is the rate-limiting step for active transepithelial transport. Recent studies suggest that changes in intracellular sodium regulate the Na permeability of the luminal border, either directly or indirectly via increases in cell calcium induced by the high intracellular sodium. To test these proposals, we measured Na movement across...
متن کاملVery high water permeability in vasopressin-induced endocytic vesicles from toad urinary bladder
The regulation of transepithelial water permeability in toad urinary bladder is believed to involve a cycling of endocytic vesicles containing water transporters between an intracellular compartment and the cell luminal membrane. Endocytic vesicles arising from luminal membrane were labeled selectively in the intact toad bladder with the impermeant fluid-phase markers 6-carboxyfluorescein (6CF)...
متن کاملEffects of trifluoperazine on function and structure of toad urinary bladder. Role of calmodulin vasopressin-stimulation of water permeability.
Calcium ion plays a major regulatory role in many hormone-stimulated systems. To determine the site of calcium's action in the toad urinary bladder, we examined the effect of trifluoperazine, a compound that binds specifically to the calcium binding protein, calmodulin, and thereby prevents activation of enzymes by the calcium- calmodulin complex. 10 microM trifluoperazine inhibited vasopressin...
متن کاملVasopressin-stimulated movement of drugs and uric acid across the toad urinary bladder.
Vasopressin is known to increase the permeability of the toad bladder, an analogue of the mammalian collecting duct, to water and hydrophilic solutes such as urea. In the present study, the effect of vasopressin on the permeability of a series of lipophilic compounds, including many commonly used drugs, has been determined. In all cases, permeability increased from 50 to 100%. The response to v...
متن کاملRelationship of aggregated intramembranous particles to water permeability in vasopressin-treated toad urinary bladder.
It has been previously demonstrated with freeze-fracture electron microscopy that vasopressin induces specific structural alterations of the luminal membrane of granular cells from toad urinary bladder in a dose-dependent fashion. These alterations consist of aggregated intramembranous particles and are observed both in the presence and absence of an osmotic gradient. We examined the effect of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 81 شماره
صفحات -
تاریخ انتشار 1983